
www.manaraa.com

XML in LAML -Web Programming in ShemeKurt N�rmarkDepartment of Computer SieneAalborg UniversityDenmarknormark�s.au.dkAbstrat. The LAML software pakage makes XML available in Shemeand the funtional programming paradigm. The elements of an XMLlanguage are mirrored as funtions in Sheme. The parameter pro�les ofthe mirror funtions is designed to be easily reognizable from an XMLpoint of view, and to make a good �t with Sheme seen as a list pro-essing language. The paper haraterizes the mirrors by means of sixmirror rules. A series of pratial examples illustrate the approah. TheXML-in-LAML faility supports systemati mirroring of XML languagesto Sheme. The faility onsists of a language independent part (om-mon for all XML languages) and language dependent parts, whih aregenerated from XML doument type de�nitions (DTDs).1 IntrodutionMarkup languages in the XML family are stati in the sense that they missa number of \dynami qualities" whih the programming language ommunitytakes for granted:{ Language extensibility - forming and implementing new onepts.{ Enapsulation of details - forming abstrations as a measure against growingomplexity.{ Availability of basi omputational power - suh as arithmeti expressionsand �le input/output.{ Conditional branhing - hosing among alternatives.{ Iteration - repeated omputations, in part based on proessing of data ol-letions.It ould be argued that XML should be extended to aommodate some ofthese needs, but we do not think it is a good idea. The relative simpliity of theore XML framework seems to be a major asset, whih already is threatened bythe multipliity of failities that grow up around the XML ore ideas.We are working on an approah where XML languages are mirrored inSheme. As the main goal, we go for a mirror that{ preserves the avor of XML in the programs,

www.manaraa.com

2 { �ts well with the means of expressions in Sheme.Using a mirror of XML side by side with Sheme provides a powerful partner-ship. The Sheme programmer will �nd that the XML voabulary is availablein a straightforward Sheme syntax. The XML author will have aess to thefull Sheme language at any point in his or her doument, and at any time ina development proess. This implies that many problems enountered duringauthoring of omplex materials an be solved by programmati means.An XMLmirror makes the elements of a markup language available as a set offuntions in Sheme. We have organized the mirrors, and other related librariesand tools, in a software pakage alled LAML (whih means \Lisp AbstratedMarkup Language").We see a good �t between the nesting of desriptive markupelements [7℄ and the omposition of expressions in a funtional program. Withthis basis, many problems in the XML domain an be solved by means of solu-tions within the funtional programming paradigm. Doument validation an bedealt with by means of type heking, either statially (as part of ompilation)or dynamially (when the program is exeuted). Using Sheme as the underlyingprogramming language it is most natural to go for dynami XML validation.In setion 2 we will desribe the onventions and rules of the mirrors, andwe will disuss a number of issues related to the rules. In setion 3 we illustrateappliations of the mirror funtions in a series of small, pratial examples. Weidentify a need for further systemati generalizations whih leads us to desribethe XML-in-LAML framework for mirroring of XML languages in Sheme. Thisis desribed in setion 4. Similar work is pointed out in setion 5, followed bythe onlusions in setion 6.2 Mirror rulesThe main idea in our approah is to mirror the elements of HTML or an XMLlanguage to a set of funtions in the programming language Sheme. For eahelement of the markup language there is a orresponding funtion in Sheme, ofthe same name as the element.As already mentioned in the introdution we go for a preservation of theHTML/XML avor and a good �t with the means of expression in the program-ming language. Needless to say, this is a trade o�, whih omes with a ertainprie.Basially and intuitively, the HTML/XML fragment<tag a1 = "v1" ... am = "vm"> ontents</tag>orresponds to the Sheme form(tag 'a1 "v1" ... 'am "vm" ontents)In the Sheme form 'a1 ... 'am are symbols and "v1" ... "vm" are strings whihtogether represent the HTML/XML attributes. The ontents onstituent rep-resents zero, one or more ontents elements in terms of strings (PCDATA) orativations of mirror funtions (hildren).

www.manaraa.com

3The parameter onventions of the mirror funtions are de�ned by 6 rules:{ Mirror rule 1. An attribute name is a symbol in Sheme, whih mustbe followed by an expression of type string, whih plays the role as theattribute's value.{ Mirror rule 2. Parameters whih do not follow a symbol are ontent ele-ments (strings or instanes of elements).{ Mirror rule 3. All ontent elements are impliitly separated by white spae.{ Mirror rule 4. A distinguished data objet (the boolean value false) whihwe onveniently bind to a variable named suppresses white spae at theloation where the value appears.{ Mirror rule 5. Every plae an attribute or a ontent element is aeptedwe also aept a list, the elements of whih are proessed reursively andunfolded into the result.{ Mirror rule 6. An attribute with the name \ss:a" refers to the a attributein CSS [1℄.We use the dynami types of data to distinguish between element ontents andattributes. Attributes are aounted for by simulated keyword parameters. Theexat interpretation of the parameters of the mirror funtion depends on theontext. (A string is an attribute value if it preedes a symbol, else it is on-tribution to the textual ontents). Rule number 4 allows us to handle whitespae issues in the surround of the ontents parameters, rather than inside theontents. We �nd it better to ask for white spae suppression than white spaeadding, beause white spae separation is more frequently ourring than `denseonatenation'.The Sheme mirror of the HTML/XML elements allows attribute-value pairsat arbitrary loations in an ativation of a mirror funtion. Thus,(a 'href "url" 'target "win" "anhor")is equivalent with both of the forms(a 'href "url" "anhor" 'target "win")(a "anhor" 'href "url" 'target "win")Due to rule number 5 it is possible to work with �rst lass attribute lists. Withthis, the form(let ((a-list (list 'href "url" 'target "win")))(a "anhor" a-list))is also equivalent to the three forms shown above. This provides for de�nitionof standard attribute lists of HTML elements suh as html, meta, and body.Without rule number 5 it would be awkward to splie an attribute list into aSheme mirror expression. This aspet is illustrated in a pratial example whihis disussed in setion 3 and shown in appendix A.2.The element ontents an also be passed as a list rather than as individualparameters. The following gives a simple example:

www.manaraa.com

4 (ul(map (ompose li p) list-of-strings))This detail of the mirror is ruial to make a good �t between Sheme (as a fun-tional list proessing language) and HTML/XML. The reason is that strutureddata, to appear in web douments, typially is represented in lists when we workin languages like Sheme. It is therefore important that the mirror funtionsaept lists of elements.It is also important for our approah that the markup elements are mirroredas funtions, and not as maros. The reason is that maros annot play thesame role as funtions when applied together with higher-order funtions. In theexample above we ompose the li and p funtions (mirrors of the HTML li andp elements) to a funtion whih is applied on every string in a list. If the variablelist-of-strings is bound to the list ("xml" "in" "laml") the expression isrendered as<p>xml</p><p>in</p><p>laml</p>An HTML/XML mirror funtion returns an instane of an internal struture(a tagged list struture) whih represents an XML syntax tree of a given dou-ment fragment. The syntax tree an be rendered as an HTML/XML string, usinga funtion alled render. Naive and simple versions of the rendering funtionwould reursively aggregate a string by means of string onatenation. We usea more eÆient traversal that either renders diretly to an output port, or intoa pre-alloated and �xed-sized string, segments of whih an be onatenated ifneeded in the end of the rendering proess.The use of the HTML/XML mirror funtions validates the doument whileonstruting the internal doument struture. If validation problems are enoun-tered there will be warnings or a fatal error (depending the mode of proessing).Well-formedness is assured by the Sheme syntax, whih is less redundant thanHTML/XML. (The Sheme syntax does not make use of end tags). The vali-dation is done relative to the onstraints de�ned by a doument type de�nition(DTD). LAML provides an ad ho DTD parser whih outputs a list representa-tion of the DTD in whih all parameter entities (textual maros) are expanded.From this information it is relatively easy to synthesize the mirror funtions.The only real hallenge in the mirror synthesis proess is the doument vali-dation, whih is done semi-automatially from the DTD. In the urrent versionof LAML (version 17.20) XML element ontent-models of the forms1. EMPTY2. (#PCDATA)3. (x | y ... | z)*4. (x | y ... | z)+

www.manaraa.com

55. (x, y, ..., z)6. (x?, y?, ..., z?)7. Mixes of 5 and 6, suh as for instane (x?, y, v?, w)automatially derive validation prediates. Element ontent-models of other formsare handled by manually written prediate. As an example, the generation of theXHTML strit/transitional/frameset mirrors [5℄ alled for manual generation ofonly three validation prediates out of 67/77/78 non-empty elements (namely fortable, map, head). In the LAML mirror of SVG [6℄ we need to write validationprediates for 30 elements out of 76 non-empty elements (this has not yet beendone). The end goal is naturally to support a hundred perent automated mirrorgeneration.The doument validation would be ompromised if we allow the haraters`<' and `>' within the textual ontents. Instead of prohibiting these haraterswe transform them to the HTML harater entities denoted by < and >respetively. The transformation is done by a systemati mapping of all hara-ters through a HTML harater transformation table whih is useful for otherpurposes as well (suh as transformation of national haraters like `�', `�', and�̀a to æ ø, and å respetively).Several people have argued against the passing of textual ontents as quotedstrings to Sheme funtions [14℄. The following serves as an example of theproblem:(p "A text with" (b "bold")"and" (em "emphasized") "words")Using the LAML Emas ommands it is easy to produe this form from the rawstring"A text with bold an emphasized words".First, nest the whole string in a p form (using the nest editor ommand). Nextembed the substrings \bold" and \emphasized" in the b and em form respe-tively, using the embed editor ommand. The inverse ommands unnest andunembed are also available in the LAML Emas environment. Likewise, stringsplitting and string joining editor ommands are supported.A more detailed disussion of the mirror funtions, and in partiular addi-tional examples of using the mirror funtions together with higher-order fun-tions, an be found in [21℄.3 ExamplesIn this setion we will illustrate our approah by means of a number of examples.All the examples are loated in appendix A and in an on-line appendix on theweb [17℄. It is natural to start from the level of HTML (here using XHTML).Appendix A.1 shows an initial XHTML doument and appendix A.2 illustratesa similar doument written in LAML.

www.manaraa.com

6 The LAML doument shown in appendix A.2 uses XHTML mirror funtions,suh as html, head, and meta. The \standard attributes" of the html and metaelements are fatored out in the list html-props and meta-props. The proe-dure write-html is a LAML proedure that renders the HTML doument on a�le of the same proper name as the soure doument. In addition write-htmlontrols the printing mode (pretty printing or unformatted) and the inlusionof a doument prologue (an XML delaration and a doument type de�nition)and epilogue (in terms of omments).We an of ourse use the basi mehanisms of the programming language,suh as onditional �ltering, name binding and de�nition of abstrations. Withthis, we an re�ne the LAML doument from appendix A.2 to that of A.3. Thedoument in appendix A.3 is interesting in the following respets:{ Generalizations: We have generalized the doument to inlude delarativeknowledge about the relevane of the individual items in the list (programmerand general relevane) and based on the global variable view the list ofitems is �ltered appropriately.{ Name bindings: The three major parts of the doument (do-header,do-substane, and do-trailer) are de�ned in a let* name binding on-strut side by side with a ouple of minor funtions.{ Ad ho abstrations: The funtions kn and normark-url have been de-�ned globally in the doument. The �rst should be moved to the LAML init�le, as it is useful in many of the author's LAML douments. The lattermakes it easy to rediret some links of the doument to another loation.When the doument is brought into the domain of Sheme it is attrativeto introdue new means of expression whih an be seen as domain-spei� ex-tensions of the set of HTML elements. For illustrative purposes we de�ne thenew laml-li-anhor element, whih is useful for enumeration of LAML relatedlinks. This is illustrated in appendix A.4.In our work we have experiened good use of ad ho abstrations, suh asnormark-url. The use of ad ho abstrations ontributes with a number ofqualities:{ Maintainability. It beomes muh easier to maintain a web doument ifrepeated piees are represented only one in the body of a funtion. In parti-ular, this holds for URLs, suh as represented in the funtion normark-url.{ Redability and terseness. The introdution of abstrations provides forshorter douments beause many of the funtions an be organized in reusable\onveniene libraries".We reommend development of personal onvenienelibraries, where LAML users organize preferred doument abstrations.We have made substantial developments along this road [18℄. Based on mir-rors of HTML in Sheme a number of domain spei� languages have been de-veloped in terms of a set of new funtions, whih together make up the syntatisurfae of the new languages. Exeution of the program generates the underlyingHTML doument.

www.manaraa.com

7Based on our experiene we have ome to the onlusion that language ex-tensions should be introdued with more are. We have made the following ob-servations:{ Uniform syntati onventions. The syntatial rules of language exten-sions should be ompatible with rules of the HTML mirror funtions (seesetion 2). In partiular, simple positional parameter orrespondene (asused in laml-li-anhor) is not appropriate. Also, use of attributes shouldbe provided for in a systemati way.{ High-level doument validation. It should be possible to validate the useof the language extensions in the same way as the doument an be validatedthe HTML level.Thus, development of web douments by `free Sheme programming', and inpartiular use of arbitrary funtions programmed in Sheme, is unwieldy. Theobservations from above have brought us to the onlusion that is worthwhileto more systematially introdue XML in LAML. With this we go for web do-uments whih are tightly onneted to an XML language, but still authored asa Sheme program. This is the subjet of the next setion of the paper.4 XML in LAMLThe XML-in-LAML tool generates a set of mirror funtions from an XML do-ument type de�nition (DTD). With this kind of mirroring, an XML language ismade available as a set of Sheme funtions. As desribed in setion 2, the mir-ror funtions o�er exible parameter passing onventions whih �t well with theorganization of data in lists. As a very important property, the mirror funtionsvalidate the XML doument while synthesizing the internal doument syntaxtree. Validation problems an be reported as warnings, or as fatal errors (at theprogrammers disretion).In a typial setup, the mirror funtions of an XML language synthesize aninternal syntax tree whih is transformed to HTML. Mirror funtions at the outerlevel may be assoiated with ation proedures. Ation proedures are supposedto initiate a transformation of the XML syntax tree. A mirror of the element ealls an ation proedure named e!. Besides doing the appropriate ations, theation proedures return the syntax trees.The transformed doument typially makes use of HTML mirror funtions,whih in turn produe an HTML syntax tree. The HTML syntax tree is �nallyrendered as text and written to �les. At both the XML level and the HTMLlevel we an make use of ad ho abstrations in terms of plain Sheme funtions.As argued in setion 3, the use of suh funtions often makes it muh easier tomaintain the douments.Two XML languages overlap if one or more elements are de�ned in both lan-guages using the same element name. XML handles the problem of overlappinglanguages by means name spaes [2℄. LAML needs to handle the problem suhthat a number of overlapping XML languages an oexist as mirrors in LAML.

www.manaraa.com

8 Sheme is a language with a at name spae at top level (without a pakageor module onept) and as suh Sheme does not o�er an immediate and easysolution to the problem. We ould solve the problem with systemati use ofname pre�xing. With this solution, we would address the mirrors of a titleelements in lang1 and lang2 as lang1:title and lang2:title respetively.We do not want to impose this naming sheme uniformly beause, in pratie,the set of overlapping element names is typially small, and as suh, uniformname pre�xing would impose an unreasonable burden on the programmer. Inaddition it would lutter the LAML douments.In the XML-in-LAML framework we use the following solution:{ Simple naming. As the basi rule, we bind the mirror funtions to simplenames, hereby introduing the kind ambiguity desribed above.{ Protetion of the Sheme name spae. In ase of a onit between aname of a mirror funtion an a Sheme name (syntax or library proedurename) the mirror funtion is not available via a simple name.1{ Language maps. All mirror funtions are available via lookup in a lan-guage map, whih maps symbols to mirror funtion objets. Using the lan-guage map, (lang1 'title) returns the title mirror funtion in lang1,and (lang2 'title) the title mirror funtion of lang2.{ Detetion of language overlaps. If we apply an ambiguous mirror fun-tion via a simple name, the XML-in-LAML framework will issue an errormessage. The error message may be a warning or a fatal error, dependingon the proessing mode.We want to preserve the simple nature of XML-in-LAML and take are of theexeptions at run time on a well-informed bakground. The following shows atypial use of the language map:(let ((lang1:title (lang1 'title))(lang2:title (lang2 'title)))(...(lang1:title "t1") ...(lang2:title "t2")))The XML-in-LAML software is organized in a language independent part andlanguage dependent parts. The language independent part is a LAML libraryalled xml-in-laml. The language dependent parts are generated from doumentDTDs of individual XML languages, inluding a subset of the neessary ontentvalidation prediates (as already disussed in setion 2). In the situations wherewe annot automatially synthesize a validation prediate for an XML element,the prediate must be written in a `runtime �le' whih is inluded in the languagedependent part of the mirror.1 We an hoose to extend the handling of name onits to over also names ofimportant LAML funtions and proedures.

www.manaraa.com

9Besides the generation of the mirror funtions and the validation prediates,some of the information in the doument type de�nition is valuable for doumen-tation purposes. Consequently, the LAML manual doument style [18℄, whih isused for generation of most of the LAML software doumentation, an extratand merge DTD information about attributes and the ontent models with othermanual properties.Using the XML-in-LAML framework, we start a linguisti abstration proessby de�ning a new doument type de�nition (DTD). The DTD gives rise to amirror of the XML language in Sheme. The resulting mirror uses the mirrorrules, whih we desribed in setion 2. The transformation of the XML-in-LAMLdoument (typially to HTML) is initiated in the ation proedures.This approah gives muh better douments than the ad ho approah il-lustrated in setion 3. First of all, the language is syntatially ontrolled andwell-de�ned via a grammatial framework (the DTD). Seond, the derivationof the mirror funtions ensure use of uniform parameter onventions aross alllanguage onstruts. This stands as a ontrast to a language de�ned by arbitraryfuntions. Third, the doument validation provides for a rather omprehensivesyntati error heking, whih is diÆult and error prone to program on an adho basis.As the primary use of XML-in-LAML until now, we have made a new pro-grammati front-end of LENO [16℄, whih is a non-trivial, web-based leture notesystem in LAML. The LENO DTD urrently has 80 XML elements, of whih 70are non-empty. Of these 70 elements only three elements need manually writtenvalidation prediates. The new front-end of LENO has proven to be a majorimprovement ompared to the old ad ho front-end, not least beause of theuse of XML-style attributes instead of positional or `rest parameters'. The XMLvalidation is also a major step forward ompared to ad ho parameter heking(at run time) in the old LENO interfae.We plan to use XML-in-LAML systematially in the future for most of thedomain spei� languages (doument styles) in the LAML software pakage [18℄.5 Similar WorkMany developers in the XML ommunity rely on XSLT [3℄ for doument pro-essing purposes. XSLT is a pattern-based programming language, developed fortransformations of XML douments. XSLT is an XML language itself. The mainpoints of interest relative the work desribed in this paper are the following:{ Speial-purpose or general-purpose language? XSLT is a speial-pur-pose language whih supports onepts that �t well with the typial transfor-mation tasks to be solved. Sheme is a general purpose, multi-paradigmatilanguage with solid roots in the funtional paradigm. It is likely that XSLTwill need to inlude more and more general-purpose aspets. On the otherside, it may be attrative if the speialized pattern mathing funtionalityof XSLT an be aommodated in Sheme and LAML.

www.manaraa.com

10{ New or old language? XSLT is a relatively new language whih is stillbeing developed. Of that reason, XSLT is still immature in a number ofareas. Sheme is an old language, whih is well-proven in a number of areas,but still relatively unproven in the area of web development.{ Uni-linguisti or multi-linguisti approah? XSLT represents a uni-linguisti approah to web-development beause only a single language frame-work is in use for doument representation and doument proessing (namelyXML). LAML also represents a uni-linguisti approah, beause both dou-ment and doument proessing is expressed in Sheme. It is worth notiingthat many other approahes are multi-paradigmati, beause they involveboth an XML language and a programming language. This is espeially thease in the domain of web server appliations.The PLT developers use XML as an example in their disussion of little lan-guages and their programming environments [4℄. XML is embedded into Sheme,hereby giving rise to a language alled S-XML. Like Sheme, S-XML uses paren-thesized Lisp syntax. The embedding of X-SML in Sheme is done by means ofa maro xml, whih serves as a bridge between Sheme and S-XML. A speialonstrut of S-XML alled lmx is an espae mehanism bak to Sheme.XML-in-LAML is a more tight integration of XML in Sheme than S-XML.The reason is that the XML voabulary is made available as funtions in LAML.We use the mirroring metaphor instead of embedding. Our approah providesfor use of the XML mirror funtions together with higher-order funtions. Pro-gramming with higher-order funtions is muh more diÆult using the S-XMLapproah. In addition, there is no need for the lmx esape in LAML. Shemeexpressions and XML expressions (in LAML syntax) an be intermixed in ar-bitrary ways. This is probably the main asset of LAML ompared with similarSheme-based frameworks.In a more reent development, the PLT group has desribed a `transformationby example' approah [10℄, whih relies on the experienes with high-level marosSheme [9℄. The `transformation by example' work is based on an XML patternmathing language, along the lines of XSLT. In addition, the paper outlines someideas about the representation and proessing of XML data in Sheme.Besides the PLT work, Sheme has been used for web programming purposesin Queinne's work [22, 23℄, in BRL [11℄, and to some degree in Latte [8℄.XML and web programming has also attrated the interest of other funtionalprogramming ommunities, not least that of Haskell. Wallae and Runiman dis-uss two di�erent representations of XML douments in Haskell [25℄. In additionMeijer and olleagues have in a number of papers dealt with aspets of web pro-gramming using Haskell [12{14℄. Thiemann has also published related work [24℄.We refer the reader to another paper [21℄ for a more detailed omparison ofLAML and the related work in Haskell.

www.manaraa.com

116 ConlusionThe Sheme mirrors of HTML4, XHTML1.0, and a number of other XML lan-guages have been the bakbone of a substantial amount of web software, devel-oped by the author during the last four years. The software is divided betweenstati generation of HTML-based materials, and server-side programs that relyon CGI.We have found that it is attrative to use Sheme and LAML for program-mati authoring of non-trivial stati materials. The ideas of programmati au-thoring are desribed in additional details in [20℄. We have found that LAML anbe used as an alternative to authoring diretly in HTML, or as an alternative tousing a visually oriented WYSIWYG authoring tool. Using Sheme and LAML,the author is well-equipped to deal with almost arbitrary doument omplexity.Programmati authoring with LAML will probably not have a broad appeal,however. The approah is only attrative to authors who prefer a programmatiapproah to problem solving (and it is of primary interest to developers whoare about funtional programming in Sheme).We have also found that Sheme and LAML is viable for programming ofmany web servies. The loading time of appliation software, HTML/XML mir-ror libraries and CGI libraries (as Sheme soure programs) does not preventthe software from being used for many pratial purposes. Moreover, the useof Sheme provides for a very exible development proess, in whih it is easyand realisti to arry out frequent hanges in order to adapt the software to theexpetations of the users.The onnetion between the LAML and XML is important, beause it bindsweb work in Sheme lose to mainstream web work. Without this onnetion,LAML douments easily drift in more or less arbitrary diretions. In priniple,it is possible to write XML-in-LAML douments, suh as most simple LENOdouments, in pure XML. In reality, however, the use of XML-in-LAML givesso muh exibility and leverage that a Sheme programmer would never beattrated by solutions in pure XML.LAML is available as free software (under the GNU general publi liense).LAML is supported by several Sheme systems (PLT, SCM, and Guile) on bothUnix and Windows. The LAML home page [15℄ ontains additional douments,inluding a LAML tutorial [19℄.Referenes1. Bert Bos, H�akon Wium Lie, Chris Lilley, and Ian Jaobs. Casading style sheets,level 2 CSS2 spei�ation. Tehnial report, W3C, May 1998.2. Time Bray, Dave Hollander, and Andrew Layman. Namespaes in XML. W3C re-ommendation in http://www.w3.org/TR/1999/REC-xml-names-19990114/, Jan-uary 1999.3. James Clark. XSL transformations (XSLT) version 1.0. W3C reommendation inhttp://www.w3.org/TR/xslt, November 1999.

www.manaraa.com

124. John Clements, Paul T. Graunke, Shriram Krishnamurthi, and Matthias Felleisen.Little languages and their programming environments. In Proeedings of Mon-terey Workshop 2001, 2001. Available from http://www.s.rie.edu/CS/PLT/-Publiations/mw01-gkf.pdf.5. World Wide Web Consortium. XHTML 1.0: The extensible hypertext markuplanguage, January 2000. Available from http://www.w3.org/TR/xhtml1/.6. World Wide Web Consortium. Salable vetor graphis (svg) 1.0 spei�ation,September 2001. Available from http://www.w3.org/TR/SVG/.7. James H. Coombs, Allen H. Renear, and Steven J. DeRose. Markup systems andthe future of sholarly text proessing. Communiations of the ACM, 30(11):933{947, November 1987.8. Bob Glikstein. Latte|the language for transforming text, 1999. Loated onhttp://www.latte.org/.9. Eugene E. Kohlbeker Jr. Syntati Extensions in the Programming Language Lisp.PhD thesis, Indiana University, August 1986. Tenial Report no. 199.10. Shriram Krishnamurthi, Kathryn E. Cray, and Paul T. Graunke. Transformation-by-example for XML. In E. Pontelli and V. Santos Costa, editors, PADL 2000,LNCS 1753, pages 249{262. Springer Verlag, 2000.11. Brue R. Lewis. BRL|a database-oriented language to embed in HTML and othermarkup, Otober 2000. Loated on http://brl.soureforge.net/.12. Erik Meijer. Server side web sripting in Haskell. Journal of funtional program-ming, 10(1):1{18, January 2000.13. Erik Meijer and Mark Sheilds. Xm� - a funtional language for onstruting andmanipulating XML douments. Submitted to USENIX Annual Tehnial Confer-ene 2000, 2000. Available via http://www.se.ogi.edu/�mbs/pub/xmlambda/.14. Erik Meijer and Danny van Velzen. Haskell server pages - funtional programmingand the battle for the middle tier. In Eletroni Notes in Theoretial ComputerSiene 41, no. 1. Elsevier Siene B.V., 2001. Available via http://www.elsevier.-nl/loate/ents/volume41.html.15. Kurt N�rmark. The LAML home page, 1999. http://www.s.au.dk/�normark/-laml/.16. Kurt N�rmark. Web based leture notes - the LENO approah, November 2001.Available via [15℄.17. Kurt N�rmark. A olletion of LAML examples, 2002. WEB material available athttp://www.s.au.dk/�normark/sheme/examples/plan-x/index.html.18. Kurt N�rmark. The development of LAML - a suite of web software for Sheme,May 2002. Available via [15℄.19. Kurt N�rmark. The LAML tutorial. Part of the LAML system, April 2002. Alsoavailable via [15℄.20. Kurt N�rmark. Programmati WWW authoring using Sheme and LAML. InThe proeedings of the Eleventh International World Wide Web Conferene - Theweb engineering trak, May 2002. ISBN 1-880672-20-0. Available from http://-www2002.org/CDROM/.21. Kurt N�rmark. WEB programming in Sheme - the LAML approah. Submittedto Journal of Funtional Programming, April 2002. Available via [15℄.22. Christian Queinne. The inuene of browsers on evaluators or, ontinuations toprogram web servers. In Proeedings of the �fth ACM SIGPLAN internationalonferene on Funtional programming, pages 23{33. ACM Press, September 2000.23. Christian Queinne. Inverting bak the inversion of ontrol or, ontinuations versuspage-entri programming. Tehnial Report Tehnial Report 7, LIP6, Universit�eParis 6, May 2001.

www.manaraa.com

1324. Peter Thiemann. Modeling HTML in haskell. In E. Pontelli and V. Santos Costa,editors, Pratial Aspets of Delarative Languages, LNCC 1753, Leture Notes inComputer Siene, pages 263 { 277, Seond International Workshop, PADL 2000,Boston, MA, USA, 2000. Springer Verlag.25. Malolm Wallae and Colin Runiman. Haskell and XML: Generi ombinatorsor type-based translation? In Proeedings of the ACM SIGPLAN InternationalConferene on funtional programming, pages 148{159, 1999. Published in SigplanNoties vol 34 number 9.

www.manaraa.com

14A Program examplesThis appendix shows a number of LAML examples whih are disussed in setion3 of the paper. All the examples are available in an aompanying on-line resoureon the web [17℄.A.1 An initial HTML doumentIn this setion of the appendix we show an XHTML doument, the LAML oun-terpart of whih is shown in A.2.<?xml version="1.0" enoding="iso-8859-1"?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strit//EN""http://www.w3.org/TR/xhtml1/DTD/xhtml1-strit.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" ontent="text/html; harset=iso-8859-1"><title>LAML Info</title></head><body><h1>LAML Info</h1><p>Here you find a number of links to LAML information:</p>General LAML info LAML downloadInfo for programmers<p>Kurt Normark
normark�s.au.dk</p></body></html>

www.manaraa.com

15A.2 A similar LAML doumentThe LAML program in this setion is setion is similar to the HTML doumentshown in setion A.1.(load (string-append laml-dir "laml.sm"))(laml-style "simple-xhtml1.0-strit-validating")(define meta-props(list 'http-equiv "Content-Type" 'ontent "text/html; harset=iso-8859-1"))(define html-props (list 'xmlns "http://www.w3.org/1999/xhtml"))(write-html '(pp prolog)(html html-props(head(meta meta-props)(title "First page"))(body(h1 "LAML Info")(p "Here you find a number of links to LAML information:")(ul(li (a 'href "http://www.s.au.dk/~normark/laml/""General LAML info"))(li (a 'href "http://www.s.au.dk/~normark/laml/zip-distribution/""LAML download"))(li (a 'href "http://www.s.au.dk/~normark/sheme/index.html""Info for programmers")))(p "Kurt Normark" (br)(span 'ss:bakground-olor "aqua" "normark�s.au.dk")))))(end-laml)

www.manaraa.com

16A.3 A programmatially re�ned doumentThe program shown below is a programmatially re�ned generalization of theprogram from setion A.2.(load (string-append laml-dir "laml.sm"))(laml-style "simple-xhtml1.0-strit-validating")(define meta-props(list 'http-equiv "Content-Type" 'ontent "text/html; harset=iso-8859-1"))(define html-props (list 'xmlns "http://www.w3.org/1999/xhtml"))(define (kn)(p "Kurt Normark" (br)(span 'ss:bakground-olor "aqua" "normark�s.au.dk")))(define (normark-url suffix)(string-append "http://www.s.au.dk/~normark/" suffix))(define view 'programmer)(write-html '(pp prolog)(let* ((as-anhor (lambda (e) (a 'href (seond e) (third e))))(entry list)(do-header (h1 "LAML Info"))(do-substane(div(p "Here you find a number of"(ond ((eq? view 'programmer) "programmer related")((eq? view 'general) "general")(else "???"))"links to LAML information:")(ul(map (ompose li as-anhor)(filter (lambda (e) (eq? (first e) view))(list(entry 'general (normark-url "laml/")"General LAML info")(entry 'programmer (normark-url "laml/zip-distribution/")"LAML download")(entry 'programmer (normark-url "sheme/index.html")"Info for programmers")))))))(do-trailer (kn)))(html html-props(head (meta meta-props) (title "Seond page"))(body do-header do-substane do-trailer))))(end-laml)

www.manaraa.com

17A.4 Introduing a new means of expressionThis program, whih is a variation of the program from setion A.2, illustratesthe use of a domain-spei� element, alled laml-li-anhor.(load (string-append laml-dir "laml.sm"))(laml-style "simple-xhtml1.0-strit-validating")(define meta-props(list 'http-equiv "Content-Type" 'ontent "text/html; harset=iso-8859-1"))(define html-props (list 'xmlns "http://www.w3.org/1999/xhtml"))(define (normark-url suffix)(string-append "http://www.s.au.dk/~normark/" suffix))(define (laml-li-anhor user-relative-url anhor-text)(li (a 'href (normark-url user-relative-url) anhor-text)))(write-html '(pp prolog)(html html-props(head(meta meta-props)(title "Third page"))(body(h1 "LAML Info")(p "Here you find a number of links to LAML information:")(ul(laml-li-anhor "laml/" "General LAML info")(laml-li-anhor "laml/zip-distribution/" "LAML download")(laml-li-anhor "sheme/index.html" "Info for programmers"))(p "Kurt Normark" (br)(span 'ss:bakground-olor "aqua" "normark�s.au.dk")))))(end-laml)

