
www.manaraa.com

XML in LAML -Web Programming in S
hemeKurt N�rmarkDepartment of Computer S
ien
eAalborg UniversityDenmarknormark�
s.au
.dkAbstra
t. The LAML software pa
kage makes XML available in S
hemeand the fun
tional programming paradigm. The elements of an XMLlanguage are mirrored as fun
tions in S
heme. The parameter pro�les ofthe mirror fun
tions is designed to be easily re
ognizable from an XMLpoint of view, and to make a good �t with S
heme seen as a list pro-
essing language. The paper
hara
terizes the mirrors by means of sixmirror rules. A series of pra
ti
al examples illustrate the approa
h. TheXML-in-LAML fa
ility supports systemati
 mirroring of XML languagesto S
heme. The fa
ility
onsists of a language independent part (
om-mon for all XML languages) and language dependent parts, whi
h aregenerated from XML do
ument type de�nitions (DTDs).1 Introdu
tionMarkup languages in the XML family are stati
 in the sense that they missa number of \dynami
 qualities" whi
h the programming language
ommunitytakes for granted:{ Language extensibility - forming and implementing new
on
epts.{ En
apsulation of details - forming abstra
tions as a measure against growing
omplexity.{ Availability of basi

omputational power - su
h as arithmeti
 expressionsand �le input/output.{ Conditional bran
hing -
hosing among alternatives.{ Iteration - repeated
omputations, in part based on pro
essing of data
ol-le
tions.It
ould be argued that XML should be extended to a

ommodate some ofthese needs, but we do not think it is a good idea. The relative simpli
ity of the
ore XML framework seems to be a major asset, whi
h already is threatened bythe multipli
ity of fa
ilities that grow up around the XML
ore ideas.We are working on an approa
h where XML languages are mirrored inS
heme. As the main goal, we go for a mirror that{ preserves the
avor of XML in the programs,

www.manaraa.com

2 { �ts well with the means of expressions in S
heme.Using a mirror of XML side by side with S
heme provides a powerful partner-ship. The S
heme programmer will �nd that the XML vo
abulary is availablein a straightforward S
heme syntax. The XML author will have a

ess to thefull S
heme language at any point in his or her do
ument, and at any time ina development pro
ess. This implies that many problems en
ountered duringauthoring of
omplex materials
an be solved by programmati
 means.An XMLmirror makes the elements of a markup language available as a set offun
tions in S
heme. We have organized the mirrors, and other related librariesand tools, in a software pa
kage
alled LAML (whi
h means \Lisp Abstra
tedMarkup Language").We see a good �t between the nesting of des
riptive markupelements [7℄ and the
omposition of expressions in a fun
tional program. Withthis basis, many problems in the XML domain
an be solved by means of solu-tions within the fun
tional programming paradigm. Do
ument validation
an bedealt with by means of type
he
king, either stati
ally (as part of
ompilation)or dynami
ally (when the program is exe
uted). Using S
heme as the underlyingprogramming language it is most natural to go for dynami
 XML validation.In se
tion 2 we will des
ribe the
onventions and rules of the mirrors, andwe will dis
uss a number of issues related to the rules. In se
tion 3 we illustrateappli
ations of the mirror fun
tions in a series of small, pra
ti
al examples. Weidentify a need for further systemati
 generalizations whi
h leads us to des
ribethe XML-in-LAML framework for mirroring of XML languages in S
heme. Thisis des
ribed in se
tion 4. Similar work is pointed out in se
tion 5, followed bythe
on
lusions in se
tion 6.2 Mirror rulesThe main idea in our approa
h is to mirror the elements of HTML or an XMLlanguage to a set of fun
tions in the programming language S
heme. For ea
helement of the markup language there is a
orresponding fun
tion in S
heme, ofthe same name as the element.As already mentioned in the introdu
tion we go for a preservation of theHTML/XML
avor and a good �t with the means of expression in the program-ming language. Needless to say, this is a trade o�, whi
h
omes with a
ertainpri
e.Basi
ally and intuitively, the HTML/XML fragment<tag a1 = "v1" ... am = "vm">
ontents</tag>
orresponds to the S
heme form(tag 'a1 "v1" ... 'am "vm"
ontents)In the S
heme form 'a1 ... 'am are symbols and "v1" ... "vm" are strings whi
htogether represent the HTML/XML attributes. The
ontents
onstituent rep-resents zero, one or more
ontents elements in terms of strings (PCDATA) ora
tivations of mirror fun
tions (
hildren).

www.manaraa.com

3The parameter
onventions of the mirror fun
tions are de�ned by 6 rules:{ Mirror rule 1. An attribute name is a symbol in S
heme, whi
h mustbe followed by an expression of type string, whi
h plays the role as theattribute's value.{ Mirror rule 2. Parameters whi
h do not follow a symbol are
ontent ele-ments (strings or instan
es of elements).{ Mirror rule 3. All
ontent elements are impli
itly separated by white spa
e.{ Mirror rule 4. A distinguished data obje
t (the boolean value false) whi
hwe
onveniently bind to a variable named suppresses white spa
e at thelo
ation where the value appears.{ Mirror rule 5. Every pla
e an attribute or a
ontent element is a

eptedwe also a

ept a list, the elements of whi
h are pro
essed re
ursively andunfolded into the result.{ Mirror rule 6. An attribute with the name \
ss:a" refers to the a attributein CSS [1℄.We use the dynami
 types of data to distinguish between element
ontents andattributes. Attributes are a

ounted for by simulated keyword parameters. Theexa
t interpretation of the parameters of the mirror fun
tion depends on the
ontext. (A string is an attribute value if it pre
edes a symbol, else it is
on-tribution to the textual
ontents). Rule number 4 allows us to handle whitespa
e issues in the surround of the
ontents parameters, rather than inside the
ontents. We �nd it better to ask for white spa
e suppression than white spa
eadding, be
ause white spa
e separation is more frequently o

urring than `dense
on
atenation'.The S
heme mirror of the HTML/XML elements allows attribute-value pairsat arbitrary lo
ations in an a
tivation of a mirror fun
tion. Thus,(a 'href "url" 'target "win" "an
hor")is equivalent with both of the forms(a 'href "url" "an
hor" 'target "win")(a "an
hor" 'href "url" 'target "win")Due to rule number 5 it is possible to work with �rst
lass attribute lists. Withthis, the form(let ((a-list (list 'href "url" 'target "win")))(a "an
hor" a-list))is also equivalent to the three forms shown above. This provides for de�nitionof standard attribute lists of HTML elements su
h as html, meta, and body.Without rule number 5 it would be awkward to spli
e an attribute list into aS
heme mirror expression. This aspe
t is illustrated in a pra
ti
al example whi
his dis
ussed in se
tion 3 and shown in appendix A.2.The element
ontents
an also be passed as a list rather than as individualparameters. The following gives a simple example:

www.manaraa.com

4 (ul(map (
ompose li p) list-of-strings))This detail of the mirror is
ru
ial to make a good �t between S
heme (as a fun
-tional list pro
essing language) and HTML/XML. The reason is that stru
tureddata, to appear in web do
uments, typi
ally is represented in lists when we workin languages like S
heme. It is therefore important that the mirror fun
tionsa

ept lists of elements.It is also important for our approa
h that the markup elements are mirroredas fun
tions, and not as ma
ros. The reason is that ma
ros
annot play thesame role as fun
tions when applied together with higher-order fun
tions. In theexample above we
ompose the li and p fun
tions (mirrors of the HTML li andp elements) to a fun
tion whi
h is applied on every string in a list. If the variablelist-of-strings is bound to the list ("xml" "in" "laml") the expression isrendered as<p>xml</p><p>in</p><p>laml</p>An HTML/XML mirror fun
tion returns an instan
e of an internal stru
ture(a tagged list stru
ture) whi
h represents an XML syntax tree of a given do
u-ment fragment. The syntax tree
an be rendered as an HTML/XML string, usinga fun
tion
alled render. Naive and simple versions of the rendering fun
tionwould re
ursively aggregate a string by means of string
on
atenation. We usea more eÆ
ient traversal that either renders dire
tly to an output port, or intoa pre-allo
ated and �xed-sized string, segments of whi
h
an be
on
atenated ifneeded in the end of the rendering pro
ess.The use of the HTML/XML mirror fun
tions validates the do
ument while
onstru
ting the internal do
ument stru
ture. If validation problems are en
oun-tered there will be warnings or a fatal error (depending the mode of pro
essing).Well-formedness is assured by the S
heme syntax, whi
h is less redundant thanHTML/XML. (The S
heme syntax does not make use of end tags). The vali-dation is done relative to the
onstraints de�ned by a do
ument type de�nition(DTD). LAML provides an ad ho
 DTD parser whi
h outputs a list representa-tion of the DTD in whi
h all parameter entities (textual ma
ros) are expanded.From this information it is relatively easy to synthesize the mirror fun
tions.The only real
hallenge in the mirror synthesis pro
ess is the do
ument vali-dation, whi
h is done semi-automati
ally from the DTD. In the
urrent versionof LAML (version 17.20) XML element
ontent-models of the forms1. EMPTY2. (#PCDATA)3. (x | y ... | z)*4. (x | y ... | z)+

www.manaraa.com

55. (x, y, ..., z)6. (x?, y?, ..., z?)7. Mixes of 5 and 6, su
h as for instan
e (x?, y, v?, w)automati
ally derive validation predi
ates. Element
ontent-models of other formsare handled by manually written predi
ate. As an example, the generation of theXHTML stri
t/transitional/frameset mirrors [5℄
alled for manual generation ofonly three validation predi
ates out of 67/77/78 non-empty elements (namely fortable, map, head). In the LAML mirror of SVG [6℄ we need to write validationpredi
ates for 30 elements out of 76 non-empty elements (this has not yet beendone). The end goal is naturally to support a hundred per
ent automated mirrorgeneration.The do
ument validation would be
ompromised if we allow the
hara
ters`<' and `>' within the textual
ontents. Instead of prohibiting these
hara
terswe transform them to the HTML
hara
ter entities denoted by < and >respe
tively. The transformation is done by a systemati
 mapping of all
hara
-ters through a HTML
hara
ter transformation table whi
h is useful for otherpurposes as well (su
h as transformation of national
hara
ters like `�', `�', and�̀a to æ ø, and å respe
tively).Several people have argued against the passing of textual
ontents as quotedstrings to S
heme fun
tions [14℄. The following serves as an example of theproblem:(p "A text with" (b "bold")"and" (em "emphasized") "words")Using the LAML Ema
s
ommands it is easy to produ
e this form from the rawstring"A text with bold an emphasized words".First, nest the whole string in a p form (using the nest editor
ommand). Nextembed the substrings \bold" and \emphasized" in the b and em form respe
-tively, using the embed editor
ommand. The inverse
ommands unnest andunembed are also available in the LAML Ema
s environment. Likewise, stringsplitting and string joining editor
ommands are supported.A more detailed dis
ussion of the mirror fun
tions, and in parti
ular addi-tional examples of using the mirror fun
tions together with higher-order fun
-tions,
an be found in [21℄.3 ExamplesIn this se
tion we will illustrate our approa
h by means of a number of examples.All the examples are lo
ated in appendix A and in an on-line appendix on theweb [17℄. It is natural to start from the level of HTML (here using XHTML).Appendix A.1 shows an initial XHTML do
ument and appendix A.2 illustratesa similar do
ument written in LAML.

www.manaraa.com

6 The LAML do
ument shown in appendix A.2 uses XHTML mirror fun
tions,su
h as html, head, and meta. The \standard attributes" of the html and metaelements are fa
tored out in the list html-props and meta-props. The pro
e-dure write-html is a LAML pro
edure that renders the HTML do
ument on a�le of the same proper name as the sour
e do
ument. In addition write-html
ontrols the printing mode (pretty printing or unformatted) and the in
lusionof a do
ument prologue (an XML de
laration and a do
ument type de�nition)and epilogue (in terms of
omments).We
an of
ourse use the basi
 me
hanisms of the programming language,su
h as
onditional �ltering, name binding and de�nition of abstra
tions. Withthis, we
an re�ne the LAML do
ument from appendix A.2 to that of A.3. Thedo
ument in appendix A.3 is interesting in the following respe
ts:{ Generalizations: We have generalized the do
ument to in
lude de
larativeknowledge about the relevan
e of the individual items in the list (programmerand general relevan
e) and based on the global variable view the list ofitems is �ltered appropriately.{ Name bindings: The three major parts of the do
ument (do
-header,do
-substan
e, and do
-trailer) are de�ned in a let* name binding
on-stru
t side by side with a
ouple of minor fun
tions.{ Ad ho
 abstra
tions: The fun
tions kn and normark-url have been de-�ned globally in the do
ument. The �rst should be moved to the LAML init�le, as it is useful in many of the author's LAML do
uments. The lattermakes it easy to redire
t some links of the do
ument to another lo
ation.When the do
ument is brought into the domain of S
heme it is attra
tiveto introdu
e new means of expression whi
h
an be seen as domain-spe
i�
 ex-tensions of the set of HTML elements. For illustrative purposes we de�ne thenew laml-li-an
hor element, whi
h is useful for enumeration of LAML relatedlinks. This is illustrated in appendix A.4.In our work we have experien
ed good use of ad ho
 abstra
tions, su
h asnormark-url. The use of ad ho
 abstra
tions
ontributes with a number ofqualities:{ Maintainability. It be
omes mu
h easier to maintain a web do
ument ifrepeated pie
es are represented only on
e in the body of a fun
tion. In parti
-ular, this holds for URLs, su
h as represented in the fun
tion normark-url.{ Redability and terseness. The introdu
tion of abstra
tions provides forshorter do
uments be
ause many of the fun
tions
an be organized in reusable\
onvenien
e libraries".We re
ommend development of personal
onvenien
elibraries, where LAML users organize preferred do
ument abstra
tions.We have made substantial developments along this road [18℄. Based on mir-rors of HTML in S
heme a number of domain spe
i�
 languages have been de-veloped in terms of a set of new fun
tions, whi
h together make up the synta
ti
surfa
e of the new languages. Exe
ution of the program generates the underlyingHTML do
ument.

www.manaraa.com

7Based on our experien
e we have
ome to the
on
lusion that language ex-tensions should be introdu
ed with more
are. We have made the following ob-servations:{ Uniform synta
ti

onventions. The synta
ti
al rules of language exten-sions should be
ompatible with rules of the HTML mirror fun
tions (seese
tion 2). In parti
ular, simple positional parameter
orresponden
e (asused in laml-li-an
hor) is not appropriate. Also, use of attributes shouldbe provided for in a systemati
 way.{ High-level do
ument validation. It should be possible to validate the useof the language extensions in the same way as the do
ument
an be validatedthe HTML level.Thus, development of web do
uments by `free S
heme programming', and inparti
ular use of arbitrary fun
tions programmed in S
heme, is unwieldy. Theobservations from above have brought us to the
on
lusion that is worthwhileto more systemati
ally introdu
e XML in LAML. With this we go for web do
-uments whi
h are tightly
onne
ted to an XML language, but still authored asa S
heme program. This is the subje
t of the next se
tion of the paper.4 XML in LAMLThe XML-in-LAML tool generates a set of mirror fun
tions from an XML do
-ument type de�nition (DTD). With this kind of mirroring, an XML language ismade available as a set of S
heme fun
tions. As des
ribed in se
tion 2, the mir-ror fun
tions o�er
exible parameter passing
onventions whi
h �t well with theorganization of data in lists. As a very important property, the mirror fun
tionsvalidate the XML do
ument while synthesizing the internal do
ument syntaxtree. Validation problems
an be reported as warnings, or as fatal errors (at theprogrammers dis
retion).In a typi
al setup, the mirror fun
tions of an XML language synthesize aninternal syntax tree whi
h is transformed to HTML. Mirror fun
tions at the outerlevel may be asso
iated with a
tion pro
edures. A
tion pro
edures are supposedto initiate a transformation of the XML syntax tree. A mirror of the element e
alls an a
tion pro
edure named e!. Besides doing the appropriate a
tions, thea
tion pro
edures return the syntax trees.The transformed do
ument typi
ally makes use of HTML mirror fun
tions,whi
h in turn produ
e an HTML syntax tree. The HTML syntax tree is �nallyrendered as text and written to �les. At both the XML level and the HTMLlevel we
an make use of ad ho
 abstra
tions in terms of plain S
heme fun
tions.As argued in se
tion 3, the use of su
h fun
tions often makes it mu
h easier tomaintain the do
uments.Two XML languages overlap if one or more elements are de�ned in both lan-guages using the same element name. XML handles the problem of overlappinglanguages by means name spa
es [2℄. LAML needs to handle the problem su
hthat a number of overlapping XML languages
an
oexist as mirrors in LAML.

www.manaraa.com

8 S
heme is a language with a
at name spa
e at top level (without a pa
kageor module
on
ept) and as su
h S
heme does not o�er an immediate and easysolution to the problem. We
ould solve the problem with systemati
 use ofname pre�xing. With this solution, we would address the mirrors of a titleelements in lang1 and lang2 as lang1:title and lang2:title respe
tively.We do not want to impose this naming s
heme uniformly be
ause, in pra
ti
e,the set of overlapping element names is typi
ally small, and as su
h, uniformname pre�xing would impose an unreasonable burden on the programmer. Inaddition it would
lutter the LAML do
uments.In the XML-in-LAML framework we use the following solution:{ Simple naming. As the basi
 rule, we bind the mirror fun
tions to simplenames, hereby introdu
ing the kind ambiguity des
ribed above.{ Prote
tion of the S
heme name spa
e. In
ase of a
on
i
t between aname of a mirror fun
tion an a S
heme name (syntax or library pro
edurename) the mirror fun
tion is not available via a simple name.1{ Language maps. All mirror fun
tions are available via lookup in a lan-guage map, whi
h maps symbols to mirror fun
tion obje
ts. Using the lan-guage map, (lang1 'title) returns the title mirror fun
tion in lang1,and (lang2 'title) the title mirror fun
tion of lang2.{ Dete
tion of language overlaps. If we apply an ambiguous mirror fun
-tion via a simple name, the XML-in-LAML framework will issue an errormessage. The error message may be a warning or a fatal error, dependingon the pro
essing mode.We want to preserve the simple nature of XML-in-LAML and take
are of theex
eptions at run time on a well-informed ba
kground. The following shows atypi
al use of the language map:(let ((lang1:title (lang1 'title))(lang2:title (lang2 'title)))(...(lang1:title "t1") ...(lang2:title "t2")))The XML-in-LAML software is organized in a language independent part andlanguage dependent parts. The language independent part is a LAML library
alled xml-in-laml. The language dependent parts are generated from do
umentDTDs of individual XML languages, in
luding a subset of the ne
essary
ontentvalidation predi
ates (as already dis
ussed in se
tion 2). In the situations wherewe
annot automati
ally synthesize a validation predi
ate for an XML element,the predi
ate must be written in a `runtime �le' whi
h is in
luded in the languagedependent part of the mirror.1 We
an
hoose to extend the handling of name
on
i
ts to
over also names ofimportant LAML fun
tions and pro
edures.

www.manaraa.com

9Besides the generation of the mirror fun
tions and the validation predi
ates,some of the information in the do
ument type de�nition is valuable for do
umen-tation purposes. Consequently, the LAML manual do
ument style [18℄, whi
h isused for generation of most of the LAML software do
umentation,
an extra
tand merge DTD information about attributes and the
ontent models with othermanual properties.Using the XML-in-LAML framework, we start a linguisti
 abstra
tion pro
essby de�ning a new do
ument type de�nition (DTD). The DTD gives rise to amirror of the XML language in S
heme. The resulting mirror uses the mirrorrules, whi
h we des
ribed in se
tion 2. The transformation of the XML-in-LAMLdo
ument (typi
ally to HTML) is initiated in the a
tion pro
edures.This approa
h gives mu
h better do
uments than the ad ho
 approa
h il-lustrated in se
tion 3. First of all, the language is synta
ti
ally
ontrolled andwell-de�ned via a grammati
al framework (the DTD). Se
ond, the derivationof the mirror fun
tions ensure use of uniform parameter
onventions a
ross alllanguage
onstru
ts. This stands as a
ontrast to a language de�ned by arbitraryfun
tions. Third, the do
ument validation provides for a rather
omprehensivesynta
ti
 error
he
king, whi
h is diÆ
ult and error prone to program on an adho
 basis.As the primary use of XML-in-LAML until now, we have made a new pro-grammati
 front-end of LENO [16℄, whi
h is a non-trivial, web-based le
ture notesystem in LAML. The LENO DTD
urrently has 80 XML elements, of whi
h 70are non-empty. Of these 70 elements only three elements need manually writtenvalidation predi
ates. The new front-end of LENO has proven to be a majorimprovement
ompared to the old ad ho
 front-end, not least be
ause of theuse of XML-style attributes instead of positional or `rest parameters'. The XMLvalidation is also a major step forward
ompared to ad ho
 parameter
he
king(at run time) in the old LENO interfa
e.We plan to use XML-in-LAML systemati
ally in the future for most of thedomain spe
i�
 languages (do
ument styles) in the LAML software pa
kage [18℄.5 Similar WorkMany developers in the XML
ommunity rely on XSLT [3℄ for do
ument pro-
essing purposes. XSLT is a pattern-based programming language, developed fortransformations of XML do
uments. XSLT is an XML language itself. The mainpoints of interest relative the work des
ribed in this paper are the following:{ Spe
ial-purpose or general-purpose language? XSLT is a spe
ial-pur-pose language whi
h supports
on
epts that �t well with the typi
al transfor-mation tasks to be solved. S
heme is a general purpose, multi-paradigmati
language with solid roots in the fun
tional paradigm. It is likely that XSLTwill need to in
lude more and more general-purpose aspe
ts. On the otherside, it may be attra
tive if the spe
ialized pattern mat
hing fun
tionalityof XSLT
an be a

ommodated in S
heme and LAML.

www.manaraa.com

10{ New or old language? XSLT is a relatively new language whi
h is stillbeing developed. Of that reason, XSLT is still immature in a number ofareas. S
heme is an old language, whi
h is well-proven in a number of areas,but still relatively unproven in the area of web development.{ Uni-linguisti
 or multi-linguisti
 approa
h? XSLT represents a uni-linguisti
 approa
h to web-development be
ause only a single language frame-work is in use for do
ument representation and do
ument pro
essing (namelyXML). LAML also represents a uni-linguisti
 approa
h, be
ause both do
u-ment and do
ument pro
essing is expressed in S
heme. It is worth noti
ingthat many other approa
hes are multi-paradigmati
, be
ause they involveboth an XML language and a programming language. This is espe
ially the
ase in the domain of web server appli
ations.The PLT developers use XML as an example in their dis
ussion of little lan-guages and their programming environments [4℄. XML is embedded into S
heme,hereby giving rise to a language
alled S-XML. Like S
heme, S-XML uses paren-thesized Lisp syntax. The embedding of X-SML in S
heme is done by means ofa ma
ro xml, whi
h serves as a bridge between S
heme and S-XML. A spe
ial
onstru
t of S-XML
alled lmx is an espa
e me
hanism ba
k to S
heme.XML-in-LAML is a more tight integration of XML in S
heme than S-XML.The reason is that the XML vo
abulary is made available as fun
tions in LAML.We use the mirroring metaphor instead of embedding. Our approa
h providesfor use of the XML mirror fun
tions together with higher-order fun
tions. Pro-gramming with higher-order fun
tions is mu
h more diÆ
ult using the S-XMLapproa
h. In addition, there is no need for the lmx es
ape in LAML. S
hemeexpressions and XML expressions (in LAML syntax)
an be intermixed in ar-bitrary ways. This is probably the main asset of LAML
ompared with similarS
heme-based frameworks.In a more re
ent development, the PLT group has des
ribed a `transformationby example' approa
h [10℄, whi
h relies on the experien
es with high-level ma
rosS
heme [9℄. The `transformation by example' work is based on an XML patternmat
hing language, along the lines of XSLT. In addition, the paper outlines someideas about the representation and pro
essing of XML data in S
heme.Besides the PLT work, S
heme has been used for web programming purposesin Queinne
's work [22, 23℄, in BRL [11℄, and to some degree in Latte [8℄.XML and web programming has also attra
ted the interest of other fun
tionalprogramming
ommunities, not least that of Haskell. Walla
e and Run
iman dis-
uss two di�erent representations of XML do
uments in Haskell [25℄. In additionMeijer and
olleagues have in a number of papers dealt with aspe
ts of web pro-gramming using Haskell [12{14℄. Thiemann has also published related work [24℄.We refer the reader to another paper [21℄ for a more detailed
omparison ofLAML and the related work in Haskell.

www.manaraa.com

116 Con
lusionThe S
heme mirrors of HTML4, XHTML1.0, and a number of other XML lan-guages have been the ba
kbone of a substantial amount of web software, devel-oped by the author during the last four years. The software is divided betweenstati
 generation of HTML-based materials, and server-side programs that relyon CGI.We have found that it is attra
tive to use S
heme and LAML for program-mati
 authoring of non-trivial stati
 materials. The ideas of programmati
 au-thoring are des
ribed in additional details in [20℄. We have found that LAML
anbe used as an alternative to authoring dire
tly in HTML, or as an alternative tousing a visually oriented WYSIWYG authoring tool. Using S
heme and LAML,the author is well-equipped to deal with almost arbitrary do
ument
omplexity.Programmati
 authoring with LAML will probably not have a broad appeal,however. The approa
h is only attra
tive to authors who prefer a programmati
approa
h to problem solving (and it is of primary interest to developers who
are about fun
tional programming in S
heme).We have also found that S
heme and LAML is viable for programming ofmany web servi
es. The loading time of appli
ation software, HTML/XML mir-ror libraries and CGI libraries (as S
heme sour
e programs) does not preventthe software from being used for many pra
ti
al purposes. Moreover, the useof S
heme provides for a very
exible development pro
ess, in whi
h it is easyand realisti
 to
arry out frequent
hanges in order to adapt the software to theexpe
tations of the users.The
onne
tion between the LAML and XML is important, be
ause it bindsweb work in S
heme
lose to mainstream web work. Without this
onne
tion,LAML do
uments easily drift in more or less arbitrary dire
tions. In prin
iple,it is possible to write XML-in-LAML do
uments, su
h as most simple LENOdo
uments, in pure XML. In reality, however, the use of XML-in-LAML givesso mu
h
exibility and leverage that a S
heme programmer would never beattra
ted by solutions in pure XML.LAML is available as free software (under the GNU general publi
 li
ense).LAML is supported by several S
heme systems (PLT, SCM, and Guile) on bothUnix and Windows. The LAML home page [15℄
ontains additional do
uments,in
luding a LAML tutorial [19℄.Referen
es1. Bert Bos, H�akon Wium Lie, Chris Lilley, and Ian Ja
obs. Cas
ading style sheets,level 2 CSS2 spe
i�
ation. Te
hni
al report, W3C, May 1998.2. Time Bray, Dave Hollander, and Andrew Layman. Namespa
es in XML. W3C re
-ommendation in http://www.w3.org/TR/1999/REC-xml-names-19990114/, Jan-uary 1999.3. James Clark. XSL transformations (XSLT) version 1.0. W3C re
ommendation inhttp://www.w3.org/TR/xslt, November 1999.

www.manaraa.com

124. John Clements, Paul T. Graunke, Shriram Krishnamurthi, and Matthias Felleisen.Little languages and their programming environments. In Pro
eedings of Mon-terey Workshop 2001, 2001. Available from http://www.
s.ri
e.edu/CS/PLT/-Publi
ations/mw01-
gkf.pdf.5. World Wide Web Consortium. XHTML 1.0: The extensible hypertext markuplanguage, January 2000. Available from http://www.w3.org/TR/xhtml1/.6. World Wide Web Consortium. S
alable ve
tor graphi
s (svg) 1.0 spe
i�
ation,September 2001. Available from http://www.w3.org/TR/SVG/.7. James H. Coombs, Allen H. Renear, and Steven J. DeRose. Markup systems andthe future of s
holarly text pro
essing. Communi
ations of the ACM, 30(11):933{947, November 1987.8. Bob Gli
kstein. Latte|the language for transforming text, 1999. Lo
ated onhttp://www.latte.org/.9. Eugene E. Kohlbe
ker Jr. Synta
ti
 Extensions in the Programming Language Lisp.PhD thesis, Indiana University, August 1986. Te
ni
al Report no. 199.10. Shriram Krishnamurthi, Kathryn E. Cray, and Paul T. Graunke. Transformation-by-example for XML. In E. Pontelli and V. Santos Costa, editors, PADL 2000,LNCS 1753, pages 249{262. Springer Verlag, 2000.11. Bru
e R. Lewis. BRL|a database-oriented language to embed in HTML and othermarkup, O
tober 2000. Lo
ated on http://brl.sour
eforge.net/.12. Erik Meijer. Server side web s
ripting in Haskell. Journal of fun
tional program-ming, 10(1):1{18, January 2000.13. Erik Meijer and Mark Sheilds. Xm� - a fun
tional language for
onstru
ting andmanipulating XML do
uments. Submitted to USENIX Annual Te
hni
al Confer-en
e 2000, 2000. Available via http://www.
se.ogi.edu/�mbs/pub/xmlambda/.14. Erik Meijer and Danny van Velzen. Haskell server pages - fun
tional programmingand the battle for the middle tier. In Ele
troni
 Notes in Theoreti
al ComputerS
ien
e 41, no. 1. Elsevier S
ien
e B.V., 2001. Available via http://www.elsevier.-nl/lo
ate/ent
s/volume41.html.15. Kurt N�rmark. The LAML home page, 1999. http://www.
s.au
.dk/�normark/-laml/.16. Kurt N�rmark. Web based le
ture notes - the LENO approa
h, November 2001.Available via [15℄.17. Kurt N�rmark. A
olle
tion of LAML examples, 2002. WEB material available athttp://www.
s.au
.dk/�normark/s
heme/examples/plan-x/index.html.18. Kurt N�rmark. The development of LAML - a suite of web software for S
heme,May 2002. Available via [15℄.19. Kurt N�rmark. The LAML tutorial. Part of the LAML system, April 2002. Alsoavailable via [15℄.20. Kurt N�rmark. Programmati
 WWW authoring using S
heme and LAML. InThe pro
eedings of the Eleventh International World Wide Web Conferen
e - Theweb engineering tra
k, May 2002. ISBN 1-880672-20-0. Available from http://-www2002.org/CDROM/.21. Kurt N�rmark. WEB programming in S
heme - the LAML approa
h. Submittedto Journal of Fun
tional Programming, April 2002. Available via [15℄.22. Christian Queinne
. The in
uen
e of browsers on evaluators or,
ontinuations toprogram web servers. In Pro
eedings of the �fth ACM SIGPLAN international
onferen
e on Fun
tional programming, pages 23{33. ACM Press, September 2000.23. Christian Queinne
. Inverting ba
k the inversion of
ontrol or,
ontinuations versuspage-
entri
 programming. Te
hni
al Report Te
hni
al Report 7, LIP6, Universit�eParis 6, May 2001.

www.manaraa.com

1324. Peter Thiemann. Modeling HTML in haskell. In E. Pontelli and V. Santos Costa,editors, Pra
ti
al Aspe
ts of De
larative Languages, LNCC 1753, Le
ture Notes inComputer S
ien
e, pages 263 { 277, Se
ond International Workshop, PADL 2000,Boston, MA, USA, 2000. Springer Verlag.25. Mal
olm Walla
e and Colin Run
iman. Haskell and XML: Generi

ombinatorsor type-based translation? In Pro
eedings of the ACM SIGPLAN InternationalConferen
e on fun
tional programming, pages 148{159, 1999. Published in SigplanNoti
es vol 34 number 9.

www.manaraa.com

14A Program examplesThis appendix shows a number of LAML examples whi
h are dis
ussed in se
tion3 of the paper. All the examples are available in an a

ompanying on-line resour
eon the web [17℄.A.1 An initial HTML do
umentIn this se
tion of the appendix we show an XHTML do
ument, the LAML
oun-terpart of whi
h is shown in A.2.<?xml version="1.0" en
oding="iso-8859-1"?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Stri
t//EN""http://www.w3.org/TR/xhtml1/DTD/xhtml1-stri
t.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type"
ontent="text/html;
harset=iso-8859-1"><title>LAML Info</title></head><body><h1>LAML Info</h1><p>Here you find a number of links to LAML information:</p><a href="http://www.
s.au
.dk/~normark/laml/">General LAML info <a href="http://www.
s.au
.dk/~normark/laml/zip-distribution/">LAML download<a href="http://www.
s.au
.dk/~normark/s
heme/index.html">Info for programmers<p>Kurt Normark
<span style="ba
kground-
olor: aqua;">normark�
s.au
.dk</p></body></html>

www.manaraa.com

15A.2 A similar LAML do
umentThe LAML program in this se
tion is se
tion is similar to the HTML do
umentshown in se
tion A.1.(load (string-append laml-dir "laml.s
m"))(laml-style "simple-xhtml1.0-stri
t-validating")(define meta-props(list 'http-equiv "Content-Type" '
ontent "text/html;
harset=iso-8859-1"))(define html-props (list 'xmlns "http://www.w3.org/1999/xhtml"))(write-html '(pp prolog)(html html-props(head(meta meta-props)(title "First page"))(body(h1 "LAML Info")(p "Here you find a number of links to LAML information:")(ul(li (a 'href "http://www.
s.au
.dk/~normark/laml/""General LAML info"))(li (a 'href "http://www.
s.au
.dk/~normark/laml/zip-distribution/""LAML download"))(li (a 'href "http://www.
s.au
.dk/~normark/s
heme/index.html""Info for programmers")))(p "Kurt Normark" (br)(span '
ss:ba
kground-
olor "aqua" "normark�
s.au
.dk")))))(end-laml)

www.manaraa.com

16A.3 A programmati
ally re�ned do
umentThe program shown below is a programmati
ally re�ned generalization of theprogram from se
tion A.2.(load (string-append laml-dir "laml.s
m"))(laml-style "simple-xhtml1.0-stri
t-validating")(define meta-props(list 'http-equiv "Content-Type" '
ontent "text/html;
harset=iso-8859-1"))(define html-props (list 'xmlns "http://www.w3.org/1999/xhtml"))(define (kn)(p "Kurt Normark" (br)(span '
ss:ba
kground-
olor "aqua" "normark�
s.au
.dk")))(define (normark-url suffix)(string-append "http://www.
s.au
.dk/~normark/" suffix))(define view 'programmer)(write-html '(pp prolog)(let* ((as-an
hor (lambda (e) (a 'href (se
ond e) (third e))))(entry list)(do
-header (h1 "LAML Info"))(do
-substan
e(div(p "Here you find a number of"(
ond ((eq? view 'programmer) "programmer related")((eq? view 'general) "general")(else "???"))"links to LAML information:")(ul(map (
ompose li as-an
hor)(filter (lambda (e) (eq? (first e) view))(list(entry 'general (normark-url "laml/")"General LAML info")(entry 'programmer (normark-url "laml/zip-distribution/")"LAML download")(entry 'programmer (normark-url "s
heme/index.html")"Info for programmers")))))))(do
-trailer (kn)))(html html-props(head (meta meta-props) (title "Se
ond page"))(body do
-header do
-substan
e do
-trailer))))(end-laml)

www.manaraa.com

17A.4 Introdu
ing a new means of expressionThis program, whi
h is a variation of the program from se
tion A.2, illustratesthe use of a domain-spe
i�
 element,
alled laml-li-an
hor.(load (string-append laml-dir "laml.s
m"))(laml-style "simple-xhtml1.0-stri
t-validating")(define meta-props(list 'http-equiv "Content-Type" '
ontent "text/html;
harset=iso-8859-1"))(define html-props (list 'xmlns "http://www.w3.org/1999/xhtml"))(define (normark-url suffix)(string-append "http://www.
s.au
.dk/~normark/" suffix))(define (laml-li-an
hor user-relative-url an
hor-text)(li (a 'href (normark-url user-relative-url) an
hor-text)))(write-html '(pp prolog)(html html-props(head(meta meta-props)(title "Third page"))(body(h1 "LAML Info")(p "Here you find a number of links to LAML information:")(ul(laml-li-an
hor "laml/" "General LAML info")(laml-li-an
hor "laml/zip-distribution/" "LAML download")(laml-li-an
hor "s
heme/index.html" "Info for programmers"))(p "Kurt Normark" (br)(span '
ss:ba
kground-
olor "aqua" "normark�
s.au
.dk")))))(end-laml)

